Перевод: с немецкого на русский

с русского на немецкий

(программы в памяти)

  • 1 Lage des Programms

    сущ.
    выч. размещение программы (в памяти), расположение программы (в памяти)

    Универсальный немецко-русский словарь > Lage des Programms

  • 2 Programmfeld

    n
    1. поле ( или зона) памяти для программ, программная область ( памяти)
    2. рабочее поле программы (область памяти, используемая программой для хранения промежуточных результатов)

    Neue Deutsch-Russische Wörterbuch > Programmfeld

  • 3 Programmspeicherung

    сущ.
    2) ж.д. запоминание программ, накопление программ

    Универсальный немецко-русский словарь > Programmspeicherung

  • 4 Fallabfrage

    сущ.
    1) комп. условный опрос, фиктивный опрос
    2) выч. случайный опрос, условная выборка (подпрограммы или фрагмента программы из памяти)

    Универсальный немецко-русский словарь > Fallabfrage

  • 5 Verschiebbarkeit

    сущ.
    2) выч. перемещаемость, возможность перемещения (программы в памяти)

    Универсальный немецко-русский словарь > Verschiebbarkeit

  • 6 Firmware

    сущ.
    1) комп. "зашитые" программы, "прошитые" программы, встроенное ПО, встроенные программы (программы, записанные в ПЗУ/ППЗУ), фирменное (программное) обеспечение (в основном это программное обеспечение в постоянной памяти)
    2) тех. программно-аппаратные средства, программы ПЗУ
    3) выч. встроенное (программное) обеспечение, микропрограммные средства, программно-аппаратное обеспечение, микропрограммное обеспечение (разрабатываемое фирмой-изготовителем и записываемое в ПЗУ), прошивка (микропрограмма, программное обеспечение, хранящееся в постоянной памяти (ROM).)
    4) микроэл. встроенные микропрограммы, встроенные программы

    Универсальный немецко-русский словарь > Firmware

  • 7 Belegung

    сущ.
    1) общ. обкладка (конденсатора), обкладка, расквартирование, расположение (войск), занятость (железнодорожного пути, телеграфной или телефонной линии), загрузка (станков, машин), наложение (штрафа), подтверждение (документами), смена (напр. в пионерлагере), загрузка (станков, оборудования), покрытие
    2) комп. доказательство, инициализация (напр. массива)
    3) воен. базирование, размещение (военнослужащих в казарме), распределение (войск по гарнизонам), загрузка (массива данных)
    4) тех. выстилка, заполнение, заселённость, количество рабочих, населённость, настилка, обслуживающий персонал, просветление, рабочая бригада, футеровка, загрузка (оборудования), распределение (памяти)
    5) ж.д. занятость (пути, линии), занятие (пути, линии)
    6) юр. размещение (заключенных), обложение (íàïð. mit einer Vertragsstrafe), размещение (заключённых)
    7) экон. документирование, занятость (железнодорожном пути), обложение (налогами), подтверждение (документальное), загрузка (станков, оборудования.)
    8) артил. обечайка
    9) радио. обкладка (напр., конденсатора)
    11) электр. загрузка входов, набор (входных) переменных, облицовка, проводящая плёнка, проводящая фольга, распределение (памяти), заряд, обкладка конденсатора, обшивка, пластина конденсатора
    12) выч. соотнесение, распределение (напр. памяти), присвоение значения сразу после выделения памяти, интерпретация
    13) свз. занятость линии, занятие (линии), занятость (линии)
    14) бизн. занятость (ж.-д. пути, телефонной линии), подтверждение (документом), загрузка (машин), обложение (напр. налогами)
    15) микроэл. входных переменных, загрузка входа, набор переменных, информация, записанная в памяти (программы, константы), сигнал на входе, сигналы на входе
    16) автом. занятость (линии, пути)
    17) дер. загруженность оборудования, загрузка оборудования
    18) тлф. занятие (линии), занятость (линии)

    Универсальный немецко-русский словарь > Belegung

  • 8 Programmbereich

    сущ.
    3) оп.сист. программный экстент, раздел памяти для программ

    Универсальный немецко-русский словарь > Programmbereich

  • 9 Befehlsblock

    сущ.
    1) комп. блок формирования команд, командное устройство, устройство обработки команд, массив команд (в памяти)
    3) выч. УУ, блок выдачи команд, блок обработки команд, группа команд, устройство выдачи команд, устройство программного управления, устройство формирования команд, блок команд (в памяти), программная область (памяти), блок программы, устройство управления ВМ

    Универсальный немецко-русский словарь > Befehlsblock

  • 10 Anpassung f eines Programms

    настройка программы, фиксация программы ( по месту в памяти);настройка программы ( на использование определённой задачи)

    Neue Deutsch-Russische Wörterbuch > Anpassung f eines Programms

  • 11 Rumpfsegment

    n
    резидентный сегмент ( программы) (часть программы, постоянно находящаяся в оперативной памяти и вызывающая поочерёдно в оперативную память остальные сегменты этой программы для их выполнения)

    Neue Deutsch-Russische Wörterbuch > Rumpfsegment

  • 12 Blockierung

    сущ.
    1) общ. блокировка, блокирование
    2) комп. запрет, разбиение на блоки (программы)
    4) экон. блокада, замораживание (напр. банковского счёта)
    5) электр. запирание
    6) выч. объединение (записей) в блоки, защита (напр. памяти)
    7) нефт. забивка, засорение, образование пробки
    8) патент. блокирование (напр. производства, рынка)
    9) бизн. замораживание (напр. средств)
    11) судостр. заклинивание
    12) кинотех. остановка (напр., панорамного механизма штатива)

    Универсальный немецко-русский словарь > Blockierung

  • 13 Programmblock

    Универсальный немецко-русский словарь > Programmblock

  • 14 Speicherung

    сущ.
    1) общ. консервация (информации), консервация (информации), аккумулирование (тж. эл., тех.)
    4) тех. аккумуляция, бункеризация, запись, приёмка на склад, приёмка на хранение, складирование, запоминание (s. а. хранение), регистрация (информации), хранение (информации), магазинирование (ископаемого), консервация (напр. телевизионных программ)
    5) ж.д. накопление (напр. информации), накопление маршрутов
    6) лингв. накопитель
    8) горн. аккумулирование (напр., полезного ископаемого в бункере)
    9) текст. накопление в бункере, накопление в магазине
    10) электр. хранение (напр. информации), запоминание
    11) выч. запись (данных) в память, накопление (данных) в памяти
    12) пищ. амбарное хранение, складское хранение
    14) свар. накопление информации, хранение на складе, накопление (заготовок в магазине, в бункере), запоминание (программы)
    15) автом. накопление (напр., информации)
    16) яд.физ. концентрация
    17) гидравл. накапливание
    18) кинотех. фиксация, регистрация (напр., звука)

    Универсальный немецко-русский словарь > Speicherung

  • 15 Umadressierung eines Programms

    сущ.
    комп. переадресация программы, настройка программы по месту (в памяти)

    Универсальный немецко-русский словарь > Umadressierung eines Programms

  • 16 Verschiebung

    сущ.
    1) общ. манёвр, перенесение срока, отсрочка, переброска (войск), передвижение, спекуляция (чем-л.)
    3) геол. разлом, разрывное нарушение, смещение, сдвиг (тектоническое нарушение)
    7) тех. раздвижка, сдвиг (der Fasern innerhalb det Lage eines geordneten Faserbündels), уход (напр. частоты), перекос (нитей в ткани), перемещение
    8) ж.д. маневрирование, маневровые работы, сортировка (вагонов)
    9) юр. откладывание, перенесение
    11) лингв. дислокация, перетягивание, сдвиг
    12) фин. изменение
    13) горн. сброс
    14) полигр. несовмещение
    17) электр. передвижка
    18) выч. перенос (напр. программы)
    20) внеш.торг. спекуляция (тк. sg)
    21) психоан. замещение
    22) судостр. перекашивание, перекручивание

    Универсальный немецко-русский словарь > Verschiebung

  • 17 speicherprogrammierte Steuerung

    гл.
    1) авиа. управление с программой, хранящейся в памяти ЗУ
    3) электр. управление от программы, хранящейся в памяти системы

    Универсальный немецко-русский словарь > speicherprogrammierte Steuerung

  • 18 kemspeicherresidenter Bestandteil

    m
    резидентная часть (напр., операционной системы) (часть программы, постоянно находящаяся в оперативной памяти машины и вызывающая туда по мере надобности другие программы, находящиеся на дисках, барабанах или на ленте)

    Neue Deutsch-Russische Wörterbuch > kemspeicherresidenter Bestandteil

  • 19 Verschiebbarkeit f der Programmadressen

    Neue Deutsch-Russische Wörterbuch > Verschiebbarkeit f der Programmadressen

  • 20 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

См. также в других словарях:

  • Программы тестирования производительности — компьютера и его компонент:   Это служебный список статей, созда …   Википедия

  • Программы когнитивного вмешательства для пожилых людей (cognitive interventions with older persons) — Исходя из того что происходящее с возрастом снижение интеллекта не яв ся необратимым и что интеллектуальная деятельность в пожилом возрасте характеризуется еще довольно значительной пластичностью, нек рые исследователи разработали обучающие… …   Психологическая энциклопедия

  • Программы UNIX-подобных операционных систем — Это список популярных программ, работающих в операционных системах основанных на UNIX (POSIX совместимых). Некоторые из этих программ являются стандартными для UNIX подобных систем. Содержание 1 Системный софт 1.1 Общего назначения …   Википедия

  • Программы юникс-подобных операционных систем — Содержание 1 Системный софт 1.1 Общего назначения 1.2 Управление системой …   Википедия

  • Программы теста производительности — Содержание 1 Всё в одном 2 Тест жёсткого диска 3 Тест памяти 4 Тест процессора // …   Википедия

  • Компьютерные программы — Компьютерная программа последовательность инструкций, предназначенная для исполнения устройством управления вычислительной машины. Чаще всего образ программы хранится в виде исполняемого модуля (отдельного файла или группы файлов). Из этого… …   Википедия

  • Класс памяти — переменной (англ. Storage class)  понятие в некоторых языках программирования. Он определяет область видимости переменной, а также как долго переменная находится в памяти. Классы памяти в C и C++ Переменная в этих языках должна… …   Википедия

  • ключ защиты памяти — Код, присваиваемый блоку памяти, выделенному программе, и используемый для обращения программы к памяти в целях ее защиты. Должен совпадать с ключом защиты; при несовпадении задание завершается аварийно. [Домарев В.В. Безопасность информационных… …   Справочник технического переводчика

  • Утечка памяти — (англ. memory leak) процесс неконтролируемого уменьшения объёма свободной оперативной памяти (RAM) компьютера, связанный с ошибками в работающих программах, вовремя не освобождающих ненужные уже участки памяти, или с ошибками системных служб …   Википедия

  • Утечки памяти — Утечка памяти (англ. memory leak) процесс неконтролируемого уменьшения объёма свободной оперативной памяти (RAM) компьютера, связанный с ошибками в работающих программах, вовремя не освобождающих ненужные уже участки памяти, или с ошибками… …   Википедия

  • Защита памяти —         аппаратные и программные средства для предотвращения записи или воспроизведения информации по неразрешенному адресу памяти вычислительной системы или машины. Сущность З. п. заключается в том. что память ЦВМ программно или аппаратно… …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»